设备功能与原理介绍
磁力钻是在通电后磁力钻底部变化的电流产生磁场,吸附在钢结构上,然后磁力钻电机高速运转带动钻头,实现对钢结构钻孔。
外观: 橙色和黑色为主色
尺寸: 磁座尺寸195*90MM;
重量 13KG;
设备主要指标
序号 | 项目 | 参数 | 备注 |
1 | 输入功率 | 1200W | |
2 | 输出功率 | 610W | |
3 | 麻花钻更大直径 | 50 mm | |
4 | 更大钻孔深度 | 50 mm | |
5 | 攻丝能力 | M16 | |
6 | 夹 头 | 莫氏3号锥柄 | |
7 | 磁座更大吸持力 | 12500 N | |
8 | 磁座尺寸 | 195 x 90 mm | |
9 | 重量 | 13KG |
供货范围清单
设备主要配置表 | |||||
序号 | 主要部件名称(描述) | 型号规格 | 品牌 | 数量 | 备注 |
1 | 工具箱 | 随机标配 | 1 | ||
2 | 冷却剂壶 | 随机标配 | 1 | ||
3 | 固定带 | 随机标配 | 1 | ||
4 | 清洁勾 | 随机标配 | 1 | ||
5 | 中心针 | 随机标配 | 1 | ||
6 | 保护罩 | 随机标配 | 1 | ||
7 | 楔销 | 随机标配 | 1 | ||
8 | 带快换接头的转接柄 | 莫氏3号锥柄,钻孔直径:12~65mm,切割深度:50mm | 2 |
与外圆表面加工相比,孔加工的条件要差得多,加工孔要比加工外圆困难。这是因为:
1)孔加工所用刀具的尺寸受被加工孔尺寸的限制,刚性差,容易产生弯曲变形和振动;
2)用定尺寸刀具加工孔时,孔加工的尺寸往往直接取决于刀具的相应尺寸,刀具的制造误差和磨损将直接影响孔的加工精度;
3)加工孔时,切削区在工件内部,排屑及散热条件差,加工精度和表面质量都不易控制。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心材料上加工孔的之一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转。上述两种钻孔方式产生的误差是不相同的,在钻头旋转的钻孔方式中,由于切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发生偏斜或不直,但孔径基本不变;而在工件旋转的钻孔方式中则相反,钻头引偏会引起孔径变化,而孔中心线仍然是直的。
常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中最常用的是麻花钻,其直径规格为 Φ0.1-80mm。
由于构造上的限制,钻头的弯曲刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能达到 IT13~IT11;表面粗糙度也较大, Ra 一般为 50~12.5μm;但钻孔的金属切除率大,切削效率高。钻孔主要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和表面质量要求较高的孔,则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并提高孔的加工质量,扩孔加工既可以作为精加工孔前的预加工,也可以作为要求不高的孔的最终加工。扩孔钻与麻花钻相似,但刀齿数较多,没有横刃。
与钻孔相比,扩孔具有下列特点:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽可以做得浅些,钻芯可以做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为 IT11~IT10 级,表面粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于 的孔。在钻直径较大的孔时(D ≥30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺寸的扩孔钻扩孔,这样可以提高孔的加工质量和生产效率。
扩孔除了可以加工圆柱孔之外,还可以用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工 *** 之一,在生产中应用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工 *** 。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,工作部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其应用
铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易获得光洁的加工表面,尺寸公差也不易保证;余量太小,不能去掉上工序留下的刀痕,自然也就没有改善孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为 01.5~0.05mm。
为避免产生积屑瘤,铰孔通常采用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为 0.3~1mm/r。
铰孔时必须用适当的切削液进行冷却、润滑和清洗,以防止产生积屑瘤并及时清除切屑。与磨孔和镗孔相比,铰孔生产率高,容易保证孔的精度;但铰孔不能校正孔轴线的位置误差,孔的位置精度应由前工序保证。铰孔不宜加工阶梯孔和盲孔。
铰孔尺寸精度一般为 IT9~IT7级,表面粗糙度Ra一般为 3.2~0.8 μm。对于中等尺寸、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是生产中常用的典型加工方案。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工 *** ,镗孔工作既可以在镗床上进行,也可以在车床上进行。
1. 镗孔方式
镗孔有三种不同的加工方式。
(1)工件旋转,刀具作进给运动 在车床上镗孔大都属于这种镗孔方式。工艺特点是:加工后孔的轴心线与工件的回转轴线一致,孔的圆度主要取决于机床主轴的回转精度,孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度。这种镗孔方式适于加工与外圆表面有同轴度要求的孔。
(2)刀具旋转,工件作进给运动 镗床主轴带动镗刀旋转,工作台带动工件作进给运动。
(3) 刀具旋转并作进给运动 采用这种镗孔方式镗孔,镗杆的悬伸长度是变化的,镗杆的受力 变形也是变化的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,形成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的弯曲变形也增大,被加工孔轴线将产生相应的弯曲。这种镗孔方式只适于加工较短的孔。
2. 金刚镗
与一般镗孔相比,金刚镗的特点是背吃刀量小,进给量小,切削速度高,它可以获得很高的加工精度(IT7~IT6)和很光洁的表面(Ra为 0.4~0.05 μm)。金刚镗最初用金刚石镗刀加工,现在普遍采用硬质合金、CBN和人造金刚石刀具加工。主要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为 0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为 300~2000m/min。
为了保证金刚镗能达到较高的加工精度和表面质量,所用机床(金刚镗床)须具有较高的几何精度和刚度,机床主轴支承常用精密的角接触球轴承或静压滑动轴承,高速旋转零件须经精确平衡;此外,进给机构的运动必须十分平稳,保证工作台能做平稳低速进给运动。
金刚镗的加工质量好,生产效率高,在大批大量生产中被广泛用于精密孔的最终加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起注意的是:用金刚镗加工黑色金属制品时,只能使用硬质合金和CBN *** 的镗刀,不能使用金刚石 *** 的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿命低。
3. 镗刀
镗刀可分为单刃镗刀和双刃镗刀。
4. 镗孔的工艺特点及应用范围
镗孔和钻—扩—铰工艺相比,孔径尺寸不受刀具尺寸的限制,且镗孔具有较强的误差修正能力,可通过多次走刀来修正原孔轴线偏斜误差,而且能使所镗孔与定位表面保持较高的位置精度。
镗孔和车外圆相比,由于刀杆系统的刚性差、变形大,散热排屑条件不好,工件和刀具的热变形比较大,镗孔的加工质量和生产效率都不如车外圆高。
综上分析可知, 镗孔的加工范围广,可加工各种不同尺寸和不同精度等级的孔,对于孔径较大、尺寸和位置精度要求较高的孔和孔系,镗孔几乎是唯一的加工 *** 。镗孔的加工精度为 IT9~IT7级。镗孔可以在镗床、车床、铣床等机床上进行,具有机动灵活的优点,生产中应用十分广泛。在大批大量生产中,为提高镗孔效率,常使用镗模。
四、珩磨孔
1. 珩磨原理及珩磨头
珩磨是利用带有磨条(油石)的珩磨头对孔进行光整加工的 *** 。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。珩磨加工中,磨条以一定压力作用于工件表面,从 工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。
珩磨轨迹的交叉角 与珩磨头的往复速度 及圆周速度 有关, 角的大小影响珩磨的加工质量及效率,一般粗珩时取 °,精珩时取。为了便于排出破碎的磨粒和切屑,降低切削温度,提高加工质量,珩磨时应使用充足的切削液。
为使被加工孔壁都能得到均匀的加工,砂条的行程在孔的两端都要超出一段越程量。为保证珩磨余量均匀,减少机床主轴回转误差对加工精度的影响,珩磨头和机床主轴之间大都采用浮动连接。
珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式。
2. 珩磨的工艺特点及应用范围
1)珩磨能获得较高的尺寸精度和形状精度,加工精度为 IT7~IT6 级,孔的圆度和圆柱度误差可控制在 的范围之内,但珩磨不能提高被加工孔的位置精度。
2)珩磨能获得较高的表面质量,表面粗糙度Ra为 0.2~0.25μm ,表层金属的变质缺陷层深度极微2.5~25μm。
3)与磨削速度相比,珩磨头的圆周速度虽不高(vc=16~60m/min),但由于砂条与工件的接触面积大,往复速度相对较高(va=8~20m/min),所以珩磨仍有较高的生产率。
珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为 或更大,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等。
五、拉孔
1. 拉削与拉刀
拉孔是一种高生产率的精加工 *** ,它是用特制的拉刀在拉床上进行的。拉床分卧式拉床和立式拉床两种,以卧式拉床最为常见。
拉削时拉刀只作低速直线运动(主运动)。拉刀同时工作的齿数一般应不少于3个,否则拉刀 工作不平稳,容易在工件表面产生环状波纹。为了避免产生过大的拉削力而使拉刀断裂,拉刀工作时,同时工作刀齿数一般不应超过6~8个。
拉孔有三种不同的拉削方式,分述如下:
1)分层式拉削 这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除。为了便于断屑,刀齿上磨有相互交错的分屑槽。按分层式拉削方式设计的的拉刀称为普通拉刀。
2)分块式拉削 这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿(通常每组由2-3个刀齿组成)切除的。每个刀齿仅切去一层金属的一部分。按分块拉削方式设计的拉刀称为轮切式拉刀。
3)综合式拉削 这种方式集中了分层及分块式拉削的优点,粗切齿部分采用分块式拉削,精切齿部分采用分层式拉削。这样既可缩短拉刀长度,提高生产率,又能获得较好的表面质量。按综合拉削方式设计的拉刀称为综合式拉刀。
2. 拉孔的工艺特征及应用范围
1)拉刀是多刃刀具,在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作,生产效率高。
2)拉孔精度主要取决于拉刀的精度,在通常条件下,拉孔精度可达 IT9~IT7,表面粗糙度Ra可达 6.3~1.6 μm。
3)拉孔时,工件以被加工孔自身定位(拉刀前导部就是工件的定位元件),拉孔不易保证 孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工,往往都是先拉孔,然后以孔为定位基准加工其它表面。
4)拉刀不仅能加工圆孔,而且还可以加工成形孔,花键孔。
5)拉刀是定尺寸刀具,形状复杂,价格昂贵,不适合于加工大孔。
拉孔常用在大批大量生产中加工孔径为 Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔。
与外圆表面加工相比,孔加工的条件要差得多,加工孔要比加工外圆困难。这是因为:
1)孔加工所用刀具的尺寸受被加工孔尺寸的限制,刚性差,容易产生弯曲变形和振动;
2)用定尺寸刀具加工孔时,孔加工的尺寸往往直接取决于刀具的相应尺寸,刀具的制造误差和磨损将直接影响孔的加工精度;
3)加工孔时,切削区在工件内部,排屑及散热条件差,加工精度和表面质量都不易控制。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心材料上加工孔的之一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转。上述两种钻孔方式产生的误差是不相同的,在钻头旋转的钻孔方式中,由于切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发生偏斜或不直,但孔径基本不变;而在工件旋转的钻孔方式中则相反,钻头引偏会引起孔径变化,而孔中心线仍然是直的。常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中最常用的是麻花钻,其直径规格为 Φ0.1-80mm。
由于构造上的限制,钻头的弯曲刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能达到 IT13~IT11;表面粗糙度也较大, Ra 一般为 50~12.5μm;但钻孔的金属切除率大,切削效率高。钻孔主要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和表面质量要求较高的孔,则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并提高孔的加工质量,扩孔加工既可以作为精加工孔前的预加工,也可以作为要求不高的孔的最终加工。扩孔钻与麻花钻相似,但刀齿数较多,没有横刃。
与钻孔相比,扩孔具有下列特点:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽可以做得浅些,钻芯可以做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为 IT11~IT10 级,表面粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于 的孔。在钻直径较大的孔时(D ≥30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺寸的扩孔钻扩孔,这样可以提高孔的加工质量和生产效率。
扩孔除了可以加工圆柱孔之外,还可以用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工 *** 之一,在生产中应用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工 *** 。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,工作部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其应用
铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易获得光洁的加工表面,尺寸公差也不易保证;余量太小,不能去掉上工序留下的刀痕,自然也就没有改善孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为 01.5~0.05mm。
为避免产生积屑瘤,铰孔通常采用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为 0.3~1mm/r。
铰孔时必须用适当的切削液进行冷却、润滑和清洗,以防止产生积屑瘤并及时清除切屑。与磨孔和镗孔相比,铰孔生产率高,容易保证孔的精度;但铰孔不能校正孔轴线的位置误差,孔的位置精度应由前工序保证。铰孔不宜加工阶梯孔和盲孔。
铰孔尺寸精度一般为 IT9~IT7级,表面粗糙度Ra一般为 3.2~0.8 μm。对于中等尺寸、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是生产中常用的典型加工方案。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工 *** ,镗孔工作既可以在镗床上进行,也可以在车床上进行。
1. 镗孔方式
镗孔有三种不同的加工方式。
(1)工件旋转,刀具作进给运动 在车床上镗孔大都属于这种镗孔方式。工艺特点是:加工后孔的轴心线与工件的回转轴线一致,孔的圆度主要取决于机床主轴的回转精度,孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度。这种镗孔方式适于加工与外圆表面有同轴度要求的孔。
(2)刀具旋转,工件作进给运动 镗床主轴带动镗刀旋转,工作台带动工件作进给运动。
(3)刀具旋转并作进给运动 采用这种镗孔方式镗孔,镗杆的悬伸长度是变化的,镗杆的受力 变形也是变化的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,形成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的弯曲变形也增大,被加工孔轴线将产生相应的弯曲。这种镗孔方式只适于加工较短的孔。
2. 金刚镗
与一般镗孔相比,金刚镗的特点是背吃刀量小,进给量小,切削速度高,它可以获得很高的加工精度(IT7~IT6)和很光洁的表面(Ra为 0.4~0.05 μm)。金刚镗最初用金刚石镗刀加工,现在普遍采用硬质合金、CBN和人造金刚石刀具加工。主要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为 0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为 300~2000m/min。
为了保证金刚镗能达到较高的加工精度和表面质量,所用机床(金刚镗床)须具有较高的几何精度和刚度,机床主轴支承常用精密的角接触球轴承或静压滑动轴承,高速旋转零件须经精确平衡;此外,进给机构的运动必须十分平稳,保证工作台能做平稳低速进给运动。
金刚镗的加工质量好,生产效率高,在大批大量生产中被广泛用于精密孔的最终加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起注意的是:用金刚镗加工黑色金属制品时,只能使用硬质合金和CBN *** 的镗刀,不能使用金刚石 *** 的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿命低。
3. 镗刀
镗刀可分为单刃镗刀和双刃镗刀。
4. 镗孔的工艺特点及应用范围
镗孔和钻—扩—铰工艺相比,孔径尺寸不受刀具尺寸的限制,且镗孔具有较强的误差修正能力,可通过多次走刀来修正原孔轴线偏斜误差,而且能使所镗孔与定位表面保持较高的位置精度。
镗孔和车外圆相比,由于刀杆系统的刚性差、变形大,散热排屑条件不好,工件和刀具的热变形比较大,镗孔的加工质量和生产效率都不如车外圆高。
综上分析可知, 镗孔的加工范围广,可加工各种不同尺寸和不同精度等级的孔,对于孔径较大、尺寸和位置精度要求较高的孔和孔系,镗孔几乎是唯一的加工 *** 。镗孔的加工精度为 IT9~IT7级。镗孔可以在镗床、车床、铣床等机床上进行,具有机动灵活的优点,生产中应用十分广泛。在大批大量生产中,为提高镗孔效率,常使用镗模。
四、珩磨孔
1. 珩磨原理及珩磨头
珩磨是利用带有磨条(油石)的珩磨头对孔进行光整加工的 *** 。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。珩磨加工中,磨条以一定压力作用于工件表面,从 工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。
为了便于排出破碎的磨粒和切屑,降低切削温度,提高加工质量,珩磨时应使用充足的切削液。为使被加工孔壁都能得到均匀的加工,砂条的行程在孔的两端都要超出一段越程量。为保证珩磨余量均匀,减少机床主轴回转误差对加工精度的影响,珩磨头和机床主轴之间大都采用浮动连接。
珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式。
2. 珩磨的工艺特点及应用范围
1)珩磨能获得较高的尺寸精度和形状精度,加工精度为 IT7~IT6 级,孔的圆度和圆柱度误差可控制在 的范围之内,但珩磨不能提高被加工孔的位置精度。
2)珩磨能获得较高的表面质量,表面粗糙度Ra为 0.2~0.25μm ,表层金属的变质缺陷层深度极微2.5~25μm。
3)与磨削速度相比,珩磨头的圆周速度虽不高(vc=16~60m/min),但由于砂条与工件的接触面积大,往复速度相对较高(va=8~20m/min),所以珩磨仍有较高的生产率。
珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为 或更大,并可加工长径比大于10的深孔。需要UG编程免费资料加Q群45867470但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等。
五、拉孔
1. 拉削与拉刀
拉孔是一种高生产率的精加工 *** ,它是用特制的拉刀在拉床上进行的。拉床分卧式拉床和立式拉床两种,以卧式拉床最为常见。
拉削时拉刀只作低速直线运动(主运动)。拉刀同时工作的齿数一般应不少于3个,否则拉刀 工作不平稳,容易在工件表面产生环状波纹。为了避免产生过大的拉削力而使拉刀断裂,拉刀工作时,同时工作刀齿数一般不应超过6~8个。
拉孔有三种不同的拉削方式,分述如下:
1)分层式拉削 这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除。为了便于断屑,刀齿上磨有相互交错的分屑槽。按分层式拉削方式设计的的拉刀称为普通拉刀。
2)分块式拉削 这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿(通常每组由2-3个刀齿组成)切除的。每个刀齿仅切去一层金属的一部分。按分块拉削方式设计的拉刀称为轮切式拉刀。
3)综合式拉削 这种方式集中了分层及分块式拉削的优点,粗切齿部分采用分块式拉削,精切齿部分采用分层式拉削。这样既可缩短拉刀长度,提高生产率,又能获得较好的表面质量。按综合拉削方式设计的拉刀称为综合式拉刀。
2. 拉孔的工艺特征及应用范围
1)拉刀是多刃刀具,在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作,生产效率高。
2)拉孔精度主要取决于拉刀的精度,在通常条件下,拉孔精度可达 IT9~IT7,表面粗糙度Ra可达 6.3~1.6 μm。
3)拉孔时,工件以被加工孔自身定位(拉刀前导部就是工件的定位元件),拉孔不易保证 孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工,往往都是先拉孔,然后以孔为定位基准加工其它表面。
4)拉刀不仅能加工圆孔,而且还可以加工成形孔,花键孔。
5)拉刀是定尺寸刀具,形状复杂,价格昂贵,不适合于加工大孔。
拉孔常用在大批大量生产中加工孔径为 Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔。
欢迎机械、模具、数控行业内的朋友们在下面评论处发表自己的看法,若您喜欢这篇文章,请关注小编并将文章转发到朋友圈吧!
本文来源: *** ,版权归原作者所有。如涉及作品内容、版权和其它问题,请跟我们联系!
要测量钻头的直径,更好测量切削刃而不是刀柄(刀柄是由钻夹头固定的部分)。用游标卡尺可准确测量,但要注意,根据钻头的质量,公差误差可能在一个单位的5到15千分之一之间。
下面的钻头尺寸表给出了小数尺寸及其公制转换,更大可达1英寸
钻头尺寸表
钻头公制与英制寸尺寸对照表
中心钻头尺寸
这些专业钻头用于在两个不同的角度(60度和90度)上钻孔中心孔。它们通常用于钻车床中心和点钻,即在孔上标记以引导麻花钻。
下面的钻头尺寸表包含所有常用的中心钻头尺寸。
中心钻头公制和英制寸尺寸对照表
一、装修人工与工具
1.前言
装修最让人头疼的问题就是人工,工人做工好不好不知道,价格越来越贵还特别难请,后期上门随便安装个啥,收费基本都是经常百元起步。
工人来安装东西吧,自己也还得到场指挥(指挥还经常偶尔意见不合),不然你也怕他装不好,毕竟装上去了往往还没法无痕修改的,最终费钱、费时、费神。
2.一些自装成果
zouzou在硬装吃过亏之后,后来干脆买工具自己动手干,自己最清楚想要装在哪怎么装,慢工还能出细活。顺便省了点人工费,工具在家自己随时想干点啥自己动手就成。
比如我们当地没有宜家店,所以 *** 的宜家产品基本都是选择自己装的。
娱乐室也都是自己的心血,自己一点点搭建和安装起来,虽然有些累,但内心成就感还是满满。
二、电钻、冲击钻、电锤
最近又有朋友买房装修,把我的手电钻“借走”了, *** 脆在双11换一把新的手电钻,也借此机会与大家分享和交流家装中的电动工具的选购和使用经验。
2.电钻、冲击钻、电锤的用途差异分析
手电钻:旋转,没有冲击功能(只能靠人力来推)。如果你平时只需要扭螺丝更方便、偶尔给木板、钢板、瓷砖之类的钻孔工具,那手电钻就足够了,轻便小巧。
冲击钻:冲击钻通常可以视为手电钻的加强版,拥有更大的扭矩,可以拧螺丝和钻孔都更轻松更厉害,而且增加了冲击功能(高频力轻),可以更轻松的打墙。但它同时更为笨重,如果长期用它来扭螺丝和钻孔是很累且没必要的。
电锤:电锤就更笨重了,需要双手握持使用,它通常是用来对付冲击钻打孔比较吃力的承重墙的(低频力大),还有墙体拆改的电镐功能。
通常多合一电锤也会带电钻功能,但转数等表现往往是不如冲击钻或者大功率手电钻的,所以像一些高硬度的地砖开孔,还是用高转速的电钻。
所以手电钻、冲击钻、电锤三者没有某一个可以应付所有的工作环境和需求,它们没有冲突,只是用途不同,需要你根据自家的使用来进行选购,下面简单分享一下选购要点:
电锤
其实从家用角度来说,装修结束之后要不是经常需要在承重墙打孔的,而且电锤还是需要多注意安全,不是特别建议购买,更不太建议危险性比较大的打角磨机等工具。
如果从电锤购买角度来说,除了那些参数信息,我个人首先建议购买带电子离合的电锤,工具高速运转时的扭力是非常大的,碰到硬物很可能会扭到手,带电子离合则更安全,不容易扭到手。
也可以考虑购买带有减震结构的电锤,使用过程轻松很多,普通电锤用一天下来手都是麻的。
当然三者的夹力、夹具、钻头类型的差异这里就不再展开了。
电钻
虽然像威克士这样大品牌有多个系列和产品,电钻其实也很好选择:
- 首先看需不需要冲击功能,比如WE211/WE362就是带冲击功能的;
- 电压差异,12V对应的12V电池,20V对应20V电池,电压越大电机能力越强,续航时间更长,但同时电池相对更大更重。
2. 有线和无线的区别与选择
在工具选择上,还有一个重要规格就是有线与无线的选择。
装修工地的取电往往比较麻烦,如今无线产品更为成熟且可靠,个人推荐大家预算充足的情况下直接上手无线,好用不止一点。
首先像电钻、冲击钻这类轻型工具我比较推荐选择购买无线的,这类工具对于灵活度的要求比较高;重型、高功率工具也可以考虑有线的款式,供电比较稳定且可以长时间工作。
其次如果你是从零开始购买工具的用户,那我建议考虑从一开始就选择像威克士这样的国产大牌产品的20V无线平台,产品丰富好用,电池通用性强,而且性价比很高。
电池一开始可能会贵些,如果你买的工具比较多,那么电池通用的优势就体现了,工具方便增补,单买机身也会便宜不少,还能避免后期不同品牌之间电池不通用的状况。
锂电池可以通用各种工具,而且容量比较大,一般家用一块电池足够,两块电池基本可以无限续航和多个工具使用。威克士的电池支持电量查看和快充,一个小时就能将电池电量充满,充电快速供电也稳定,家用领域应该逐步普及无线的设备。
所以我为什么这回直接购买的威克士WE212,最主要原因就是我手里的冲击钻是WE362,两者电池通用。而且WE212几乎做到了机身长度和重量的更优组合,而且实现了扭矩和转数更大化。
PS:WE210/211虽然会再轻一些,但扭矩和电池续航肯定不如WE212。
三、威克士手电钻WE212
作为我新入手并且强大好用的工具,我觉得这里还是有必要简单与大家分享一下它,并且加入一些与WE362的简单对比。
1.WE212外观和功能
首先这把手电钻的尺寸真的很小,做到了只有152MM的长度,可以方便在狭小空间灵活使用。
其次是电钻本身是很轻的,即便是使用20V电池也没有很重,整机1.16kg在手里的分量并没有笨重感。
相比之下WE362就已经有1200g不含电池的重量了。
WE212手感很棒,可以较长时间的手持使用。
电钻顶部支持1/2快慢档调节,还有一个brushless motor标贴,意味着这是一台无刷电机的手电钻,不过据我观察威克士的产品基本都是采用的无刷电机,这种电机在后期维护上更加轻松省事,使用寿命更长。
日常扭螺丝使用1档慢速获得更大的扭矩,钻孔则使用2档高速旋转开孔。同时WE212具备18+1的档位,这种大扭矩的电钻还是稍微注意配合不同档位来进行使用,更为高效和安全。
随机配套钻头还是比较多且实用的(要是盒子就更好了),我之前购买的手电钻就给了2拧螺丝的钻头,很多应用还得买很多钻头。
值得一提的是WE212手柄底部灯光很亮,之前WE362我觉得各方面都挺好的,就是有些重加上灯感觉不太够亮。
如今WE212应该是进行了改善,灯光照明效果真的很强,没电或者漆黑的环境下也能轻松自如的继续工作,而且都有延时关灯的功能。
简单上手WE212试试电钻的同心情况,可以看到威克士WE212表现还是很好的,转动平稳,打孔圆润,基本没有偏离的发生:
一档慢速
二挡快速
而且电钻带有电子刹车,手指离开钻洞立即会停止。
2. 电动工具+钻头的使用与分享
在众多工具当中,手电钻还是非常有用且实用的,下面简单分享一下WE212的实际使用。
比如家里的各种家具都是木质的,我的餐厅的各种开关都是直接安装在了一整面墙餐边柜的侧面。
电动工具不只是能省力省时,有些时候只能由电动工具才能完成,比如我在后期让灯带穿过吊顶,这里只能用电动工具,人工是完全挖不动两层板子的,最后通过万向头完成了吊顶两侧的极限打孔。
木头
通常木板的开孔会选择这种钻头。
WE212
对于颗粒板来说,即便是打这种打孔,大扭矩高转速的WE212是非常轻松的。
打小孔就更简单的,如入豆腐。
日常比较难的还是这种实木的大深孔,家里的猫墙都是这样钻孔的,可以看到WE212也是能完成贯穿。
下面简单对比一下WE362这三种木板的表现,可以看到两者的钻孔能力是相差不大的,所以除了在墙体的转孔能力,两者功能使用差异并不是很大。
螺丝
日常拧螺丝还是比较轻松的,偶尔一些难拧的螺丝,在大扭矩面前也是轻松不少,只是需要注意对应好螺口尺寸,避免打花。
瓷砖
瓷砖钻孔通常是需要高转速来磨的,普通瓷砖选择左边这种三角钻头即可,地砖可以选择先用右边这种钻头,家里装修已经完成,平时很少又钻孔的需求,不过无论是WE212还是WE362钻孔能力都不会差的。
金属
金属钻孔通常选择含钴的麻花钻来进行,一些铝扣板或者薄的金属板都可以轻松钻孔(只要不弄错方向)。
稍厚的金属则需要一定的功夫,同时在操作施工时更好佩戴手套,避免受伤。
前面厚木和或者金属打到一半,摩擦力上升很可能出现状况(类似电锤打墙遇到钢筋),需要防范和注意,提前做好机器和板材的固定。
最近我也是买了一批相机的快拆底座,国产的底座和原厂的还是有些尺寸偏差,我则是用麻花钻对它的边缘进行一些打磨。
四、总结
家里的电器、家具、厨卫都可以使用电钻进行安装和维修,一把好用的手电钻无论是装修还是家里日常使用都是值得购买的工具。
而威克士WE212得益于强大的电机以及20V的电池组,做到了短小精悍、轻便持久,是一款不错的电钻。
20V虽然牺牲了一点重量,但无论性能还是兼容性都表现更好。威克士20V的无线工具平台产品丰富,性价比也很高,是值得大家从一开始就入的品牌平台。
最后再次提示,对于使用“力气”比较大的工具,大家在操控和使用过程中要注意安全。
钻孔、扩孔、铰孔、镗孔、珩磨孔、拉孔……孔加工必读!孔是箱体、支架、套筒、环、盘类零件上的重要表面,也是机械加工中经常遇到的表面。在加工精度和表面粗糙度要求相同的情况下,加工孔比加工外圆面困难,生产率低,成本高。
这是因为:1)孔加工所用刀具的尺寸受被加工孔尺寸的限制,刚性差,容易产生弯曲变形和振动;2)用定尺寸刀具加工孔时,孔加工的尺寸往往直接取决于刀具的相应尺寸,刀具的制造误差和磨损将直接影响孔的加工精度;3)加工孔时,切削区在工件内部,排屑及散热条件差,加工精度和表面质量都不易控制。
孔的加工 *** 有钻孔、扩孔、铰孔、镗孔、拉孔、磨孔、孔的光整加工等。下面金属加工小编为您详细介绍几种孔加工工艺,破解孔加工难题。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心材料上加工孔的之一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转。上述两种钻孔方式产生的误差是不相同的,在钻头旋转的钻孔方式中,由于切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发生偏斜或不直,但孔径基本不变;而在工件旋转的钻孔方式中则相反,钻头引偏会引起孔径变化,而孔中心线仍然是直的。
常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中最常用的是麻花钻,其直径规格为 Φ0.1-80mm。
由于构造上的限制,钻头的弯曲刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能达到 IT13~IT11;表面粗糙度也较大, Ra 一般为 50~12.5μm;但钻孔的金属切除率大,切削效率高。钻孔主要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和表面质量要求较高的孔,则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并提高孔的加工质量,扩孔加工既可以作为精加工孔前的预加工,也可以作为要求不高的孔的最终加工。扩孔钻与麻花钻相似,但刀齿数较多,没有横刃。
与钻孔相比,扩孔具有下列特点:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽可以做得浅些,钻芯可以做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为 IT11~IT10 级,表面粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于 的孔。在钻直径较大的孔时(D ≥30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺寸的扩孔钻扩孔,这样可以提高孔的加工质量和生产效率。
扩孔除了可以加工圆柱孔之外,还可以用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工 *** 之一,在生产中应用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工 *** 。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,工作部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其应用
铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易获得光洁的加工表面,尺寸公差也不易保证;余量太小,不能去掉上工序留下的刀痕,自然也就没有改善孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为 01.5~0.05mm。
为避免产生积屑瘤,铰孔通常采用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为 0.3~1mm/r。
铰孔时必须用适当的切削液进行冷却、润滑和清洗,以防止产生积屑瘤并及时清除切屑。与磨孔和镗孔相比,铰孔生产率高,容易保证孔的精度;但铰孔不能校正孔轴线的位置误差,孔的位置精度应由前工序保证。铰孔不宜加工阶梯孔和盲孔。
铰孔尺寸精度一般为 IT9~IT7级,表面粗糙度Ra一般为 3.2~0.8 μm。对于中等尺寸、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是生产中常用的典型加工方案。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工 *** ,镗孔工作既可以在镗床上进行,也可以在车床上进行。
1. 镗孔方式
镗孔有三种不同的加工方式。
(1)工件旋转,刀具作进给运动
在车床上镗孔大都属于这种镗孔方式。工艺特点是:加工后孔的轴心线与工件的回转轴线一致,孔的圆度主要取决于机床主轴的回转精度,孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度。这种镗孔方式适于加工与外圆表面有同轴度要求的孔。
(2)刀具旋转,工件作进给运动
镗床主轴带动镗刀旋转,工作台带动工件作进给运动。
(3)刀具旋转并作进给运动
采用这种镗孔方式镗孔,镗杆的悬伸长度是变化的,镗杆的受力 变形也是变化的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,形成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的弯曲变形也增大,被加工孔轴线将产生相应的弯曲。这种镗孔方式只适于加工较短的孔。
2. 金刚镗
与一般镗孔相比,金刚镗的特点是背吃刀量小,进给量小,切削速度高,它可以获得很高的加工精度(IT7~IT6)和很光洁的表面(Ra为 0.4~0.05 μm)。金刚镗最初用金刚石镗刀加工,现在普遍采用硬质合金、CBN和人造金刚石刀具加工。主要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为 0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为 300~2000m/min。
为了保证金刚镗能达到较高的加工精度和表面质量,所用机床(金刚镗床)须具有较高的几何精度和刚度,机床主轴支承常用精密的角接触球轴承或静压滑动轴承,高速旋转零件须经精确平衡;此外,进给机构的运动必须十分平稳,保证工作台能做平稳低速进给运动。
金刚镗的加工质量好,生产效率高,在大批大量生产中被广泛用于精密孔的最终加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起注意的是:用金刚镗加工黑色金属制品时,只能使用硬质合金和CBN *** 的镗刀,不能使用金刚石 *** 的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿命低。
3. 镗刀
镗刀可分为单刃镗刀和双刃镗刀。
4. 镗孔的工艺特点及应用范围
镗孔和钻—扩—铰工艺相比,孔径尺寸不受刀具尺寸的限制,且镗孔具有较强的误差修正能力,可通过多次走刀来修正原孔轴线偏斜误差,而且能使所镗孔与定位表面保持较高的位置精度。
镗孔和车外圆相比,由于刀杆系统的刚性差、变形大,散热排屑条件不好,工件和刀具的热变形比较大,镗孔的加工质量和生产效率都不如车外圆高。
综上分析可知, 镗孔的加工范围广,可加工各种不同尺寸和不同精度等级的孔,对于孔径较大、尺寸和位置精度要求较高的孔和孔系,镗孔几乎是唯一的加工 *** 。镗孔的加工精度为 IT9~IT7级。镗孔可以在镗床、车床、铣床等机床上进行,具有机动灵活的优点,生产中应用十分广泛。在大批大量生产中,为提高镗孔效率,常使用镗模。
四、珩磨孔
1. 珩磨原理及珩磨头
珩磨是利用带有磨条(油石)的珩磨头对孔进行光整加工的 *** 。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。珩磨加工中,磨条以一定压力作用于工件表面,从 工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。
珩磨轨迹的交叉角
与珩磨头的往复速度
及圆周速度
有关,
角的大小影响珩磨的加工质量及效率,一般粗珩时取
°,精珩时取。为了便于排出破碎的磨粒和切屑,降低切削温度,提高加工质量,珩磨时应使用充足的切削液。
为使被加工孔壁都能得到均匀的加工,砂条的行程在孔的两端都要超出一段越程量。为保证珩磨余量均匀,减少机床主轴回转误差对加工精度的影响,珩磨头和机床主轴之间大都采用浮动连接。
珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式。
2. 珩磨的工艺特点及应用范围
1)珩磨能获得较高的尺寸精度和形状精度,加工精度为 IT7~IT6 级,孔的圆度和圆柱度误差可控制在 的范围之内,但珩磨不能提高被加工孔的位置精度。
2)珩磨能获得较高的表面质量,表面粗糙度Ra为 0.2~0.25μm ,表层金属的变质缺陷层深度极微2.5~25μm。
3)与磨削速度相比,珩磨头的圆周速度虽不高(vc=16~60m/min),但由于砂条与工件的接触面积大,往复速度相对较高(va=8~20m/min),所以珩磨仍有较高的生产率。
珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等。
五、拉孔
1. 拉削与拉刀
拉孔是一种高生产率的精加工 *** ,它是用特制的拉刀在拉床上进行的。拉床分卧式拉床和立式拉床两种,以卧式拉床最为常见。
拉削时拉刀只作低速直线运动(主运动)。拉刀同时工作的齿数一般应不少于3个,否则拉刀工作不平稳,容易在工件表面产生环状波纹。为了避免产生过大的拉削力而使拉刀断裂,拉刀工作时,同时工作刀齿数一般不应超过6~8个。
拉孔有三种不同的拉削方式,分述如下:
1)分层式拉削
这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除。为了便于断屑,刀齿上磨有相互交错的分屑槽。按分层式拉削方式设计的的拉刀称为普通拉刀。
2)分块式拉削
这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿(通常每组由2-3个刀齿组成)切除的。每个刀齿仅切去一层金属的一部分。按分块拉削方式设计的拉刀称为轮切式拉刀。
3)综合式拉削
这种方式集中了分层及分块式拉削的优点,粗切齿部分采用分块式拉削,精切齿部分采用分层式拉削。这样既可缩短拉刀长度,提高生产率,又能获得较好的表面质量。按综合拉削方式设计的拉刀称为综合式拉刀。
2. 拉孔的工艺特征及应用范围
1)拉刀是多刃刀具,在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作,生产效率高。
2)拉孔精度主要取决于拉刀的精度,在通常条件下,拉孔精度可达 IT9~IT7,表面粗糙度Ra可达 6.3~1.6 μm。
3)拉孔时,工件以被加工孔自身定位(拉刀前导部就是工件的定位元件),拉孔不易保证孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工,往往都是先拉孔,然后以孔为定位基准加工其它表面。
4)拉刀不仅能加工圆孔,而且还可以加工成形孔,花键孔。
5)拉刀是定尺寸刀具,形状复杂,价格昂贵,不适合于加工大孔。
拉孔常用在大批大量生产中加工孔径为 Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔。
深孔钻的加工特点:
1、刀杆受孔径的限制,直径小,长度大,造成刚性差,强度低,切削时易产生振动、波纹、锥度,而影响深孔的直线度和表面粗糙度。
2、在钻孔和扩孔时,冷却润滑液在没有采用特殊装置的情况下,难于输入到切削区,使刀具耐用度降低,而且排屑也困难。
3、在深孔的加工过程中,不能直接观察刀具切削情况,只能凭工作经验听切削时的声音、看切屑、手摸振动与工件温度、观仪表(油压表和电表),来判断切削过程是否正常。
4、切屑排除困难,必须采用可靠的手段进行断屑及控制切屑的长短与形状,以利于顺利排除,防止切屑堵塞。
5、为了保证深孔在加工过程中顺利进行和达到应要求的加工质量,应增加刀具内(外)排屑装置、刀具引导和支承装置和高压冷却润滑装置。
一般孔深在孔径的5倍以上就称为深孔,它的难度在排屑和冷却,鉆孔深比较小的孔可以用麻花鉆,为了排屑顺利,铁屑要成为细条状直窜出来並带出较小的碎片,同时冷却液容易进入。
鉆头的磨法可采用比较简单的磨法:
1、钻刃夾角增大至130-140度以增加切屑厚並改变切屑排出的方向(切屑排出的方向是与刃口垂直)
2、修磨横刃以减小轴向切削刀同时切削刃靠钻芯处产生一个折角有利分屑。
4、在刃口外角倒1毫米45度角以减少磨损並提高光洁度。
5、鉆孔的转速略低些,进刀量要取大些,这样切屑增厚以条状排出。
6、冷却液的喷嘴要对着孔向里以利冷却液进入切削区域。
常见问题与解决 *** 编辑
孔表面粗糙
1.切屑粘结:降低切削速度;避免崩刃;换用极压性高的切削液,并改善过滤情况;提高切削液的压力、流量。
2.同轴度不好:调整机床主轴与钻套的同轴度;采用合适的钻套直径。
3.切削速度过低,进给量过大或不均匀:采用合适的切削用量。
4.刀具几何形状不合适:改变切削刃几何角度与导向块的形状
孔口呈喇叭形
同轴度不好:调整机床主轴、钻套与支承套的同轴度;采用合适的钻套直径,及时更换磨损过大的钻套。
钻头折断
1.断屑不好,切屑排不出:改变断屑槽的尺寸,避免过长、过浅;及时发现崩刃情况,并更换;加大切削液的压力、流量;采用材料组织均匀的工件。
2.进给量过大、过小或不均匀:采用合适的切削用量。
3.钻头过度磨损:定期更换钻头,避免过度磨损。
4.切削液不合适:选用合适的切削液并改善过滤情况。
钻头寿命低
1.切削速度过高或过低,进给量过大:采用合适的切削用量。
2.钻头不合适:更换刀具材料;变动导向块的位置、形状。
3.切削液不合适:换用极压性高的切削液;增大切削液的压力、流量;改善切削液过滤情况。
其他
切屑成带状:断屑槽几何形状不合适;切削刃几何形状不合适;进给量过小;工件材料组织不均匀:变动断屑槽及切削刃的几何形状;增大进给量;采用材料组织均匀的工件。
切屑过小:断屑槽过短或过深;断屑槽半径过小:变动断屑槽的几何形状。
切屑过大:断屑槽过长或过浅;断屑槽半径过大:变动断屑槽的几何形状
内容来源: ***
本期编辑:小艾
商务合作:
投稿邮箱:info@amtbbs.org
版权声明:AMT尊重版权并感谢每一位作者的辛苦付出与创作;除无法溯源的文章,我们均在文末备注了来源;如文章视频、图片、文字涉及版权问题,请之一时间联系我们,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!
与外圆表面加工相比,孔加工的条件要差得多,加工孔要比加工外圆困难。这是因为:
1)孔加工所用刀具的尺寸受被加工孔尺寸的限制,刚性差,容易产生弯曲变形和振动;
2)用定尺寸刀具加工孔时,孔加工的尺寸往往直接取决于刀具的相应尺寸,刀具的制造误差和磨损将直接影响孔的加工精度;
3)加工孔时,切削区在工件内部,排屑及散热条件差,加工精度和表面质量都不易控制。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心材料上加工孔的之一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转。上述两种钻孔方式产生的误差是不相同的,在钻头旋转的钻孔方式中,由于切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发生偏斜或不直,但孔径基本不变;而在工件旋转的钻孔方式中则相反,钻头引偏会引起孔径变化,而孔中心线仍然是直的。
常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中最常用的是麻花钻,其直径规格为 Φ0.1-80mm。
由于构造上的限制,钻头的弯曲刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能达到 IT13~IT11;表面粗糙度也较大, Ra 一般为 50~12.5μm;但钻孔的金属切除率大,切削效率高。钻孔主要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和表面质量要求较高的孔,则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并提高孔的加工质量,扩孔加工既可以作为精加工孔前的预加工,也可以作为要求不高的孔的最终加工。扩孔钻与麻花钻相似,但刀齿数较多,没有横刃。
与钻孔相比,扩孔具有下列特点:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽可以做得浅些,钻芯可以做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为 IT11~IT10 级,表面粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于 的孔。在钻直径较大的孔时(D ≥30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺寸的扩孔钻扩孔,这样可以提高孔的加工质量和生产效率。
扩孔除了可以加工圆柱孔之外,还可以用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工 *** 之一,在生产中应用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工 *** 。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,工作部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其应用
铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易获得光洁的加工表面,尺寸公差也不易保证;余量太小,不能去掉上工序留下的刀痕,自然也就没有改善孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为 01.5~0.05mm。
为避免产生积屑瘤,铰孔通常采用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为 0.3~1mm/r。
铰孔时必须用适当的切削液进行冷却、润滑和清洗,以防止产生积屑瘤并及时清除切屑。与磨孔和镗孔相比,铰孔生产率高,容易保证孔的精度;但铰孔不能校正孔轴线的位置误差,孔的位置精度应由前工序保证。铰孔不宜加工阶梯孔和盲孔。
铰孔尺寸精度一般为 IT9~IT7级,表面粗糙度Ra一般为 3.2~0.8 μm。对于中等尺寸、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是生产中常用的典型加工方案。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工 *** ,镗孔工作既可以在镗床上进行,也可以在车床上进行。
1. 镗孔方式
镗孔有三种不同的加工方式。
(1)工件旋转,刀具作进给运动 在车床上镗孔大都属于这种镗孔方式。工艺特点是:加工后孔的轴心线与工件的回转轴线一致,孔的圆度主要取决于机床主轴的回转精度,孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度。这种镗孔方式适于加工与外圆表面有同轴度要求的孔。
(2)刀具旋转,工件作进给运动 镗床主轴带动镗刀旋转,工作台带动工件作进给运动。
(3)刀具旋转并作进给运动 采用这种镗孔方式镗孔,镗杆的悬伸长度是变化的,镗杆的受力 变形也是变化的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,形成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的弯曲变形也增大,被加工孔轴线将产生相应的弯曲。这种镗孔方式只适于加工较短的孔。
2. 金刚镗
与一般镗孔相比,金刚镗的特点是背吃刀量小,进给量小,切削速度高,它可以获得很高的加工精度(IT7~IT6)和很光洁的表面(Ra为 0.4~0.05 μm)。金刚镗最初用金刚石镗刀加工,现在普遍采用硬质合金、CBN和人造金刚石刀具加工。主要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为 0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为 300~2000m/min。
为了保证金刚镗能达到较高的加工精度和表面质量,所用机床(金刚镗床)须具有较高的几何精度和刚度,机床主轴支承常用精密的角接触球轴承或静压滑动轴承,高速旋转零件须经精确平衡;此外,进给机构的运动必须十分平稳,保证工作台能做平稳低速进给运动。
金刚镗的加工质量好,生产效率高,在大批大量生产中被广泛用于精密孔的最终加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起注意的是:用金刚镗加工黑色金属制品时,只能使用硬质合金和CBN *** 的镗刀,不能使用金刚石 *** 的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿命低。
3. 镗刀
镗刀可分为单刃镗刀和双刃镗刀。
4. 镗孔的工艺特点及应用范围
镗孔和钻—扩—铰工艺相比,孔径尺寸不受刀具尺寸的限制,且镗孔具有较强的误差修正能力,可通过多次走刀来修正原孔轴线偏斜误差,而且能使所镗孔与定位表面保持较高的位置精度。
镗孔和车外圆相比,由于刀杆系统的刚性差、变形大,散热排屑条件不好,工件和刀具的热变形比较大,镗孔的加工质量和生产效率都不如车外圆高。
综上分析可知, 镗孔的加工范围广,可加工各种不同尺寸和不同精度等级的孔,对于孔径较大、尺寸和位置精度要求较高的孔和孔系,镗孔几乎是唯一的加工 *** 。镗孔的加工精度为 IT9~IT7级。镗孔可以在镗床、车床、铣床等机床上进行,具有机动灵活的优点,生产中应用十分广泛。在大批大量生产中,为提高镗孔效率,常使用镗模。
四、珩磨孔
1. 珩磨原理及珩磨头
珩磨是利用带有磨条(油石)的珩磨头对孔进行光整加工的 *** 。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。珩磨加工中,磨条以一定压力作用于工件表面,从 工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。
珩磨轨迹的交叉角
与珩磨头的往复速度
及圆周速度
有关,
角的大小影响珩磨的加工质量及效率,一般粗珩时取
°,精珩时取。为了便于排出破碎的磨粒和切屑,降低切削温度,提高加工质量,珩磨时应使用充足的切削液。
为使被加工孔壁都能得到均匀的加工,砂条的行程在孔的两端都要超出一段越程量。为保证珩磨余量均匀,减少机床主轴回转误差对加工精度的影响,珩磨头和机床主轴之间大都采用浮动连接。
珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式。
2. 珩磨的工艺特点及应用范围
1)珩磨能获得较高的尺寸精度和形状精度,加工精度为 IT7~IT6 级,孔的圆度和圆柱度误差可控制在 的范围之内,但珩磨不能提高被加工孔的位置精度。
2)珩磨能获得较高的表面质量,表面粗糙度Ra为 0.2~0.25μm ,表层金属的变质缺陷层深度极微2.5~25μm。
3)与磨削速度相比,珩磨头的圆周速度虽不高(vc=16~60m/min),但由于砂条与工件的接触面积大,往复速度相对较高(va=8~20m/min),所以珩磨仍有较高的生产率。
珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为 或更大,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等。
五、拉孔
1. 拉削与拉刀
拉孔是一种高生产率的精加工 *** ,它是用特制的拉刀在拉床上进行的。拉床分卧式拉床和立式拉床两种,以卧式拉床最为常见。
拉削时拉刀只作低速直线运动(主运动)。拉刀同时工作的齿数一般应不少于3个,否则拉刀 工作不平稳,容易在工件表面产生环状波纹。为了避免产生过大的拉削力而使拉刀断裂,拉刀工作时,同时工作刀齿数一般不应超过6~8个。
拉孔有三种不同的拉削方式,分述如下:
1)分层式拉削 这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除。为了便于断屑,刀齿上磨有相互交错的分屑槽。按分层式拉削方式设计的的拉刀称为普通拉刀。
2)分块式拉削 这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿(通常每组由2-3个刀齿组成)切除的。每个刀齿仅切去一层金属的一部分。按分块拉削方式设计的拉刀称为轮切式拉刀。
3)综合式拉削 这种方式集中了分层及分块式拉削的优点,粗切齿部分采用分块式拉削,精切齿部分采用分层式拉削。这样既可缩短拉刀长度,提高生产率,又能获得较好的表面质量。按综合拉削方式设计的拉刀称为综合式拉刀。
2. 拉孔的工艺特征及应用范围
1)拉刀是多刃刀具,在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作,生产效率高。
2)拉孔精度主要取决于拉刀的精度,在通常条件下,拉孔精度可达 IT9~IT7,表面粗糙度Ra可达 6.3~1.6 μm。
3)拉孔时,工件以被加工孔自身定位(拉刀前导部就是工件的定位元件),拉孔不易保证 孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工,往往都是先拉孔,然后以孔为定位基准加工其它表面。
4)拉刀不仅能加工圆孔,而且还可以加工成形孔,花键孔。
5)拉刀是定尺寸刀具,形状复杂,价格昂贵,不适合于加工大孔。
拉孔常用在大批大量生产中加工孔径为 Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔。
切削自媒体技术交流平台
行业:汽车/重工/航空/模具/3C/医疗等
规模:超万人技术社群
福利1:私信 回复 “技术” 您将获得平台发送的《技术手册》免费-免费-免费
福利2:私信 回复 “之一期” 您将获得 切削之家资料之一期
1关注 2 私信 (右上方)
与加工正常外圆相比,孔加工的条件不是那么的好,加工孔要比加工外圆困难。
分析:
1)孔加工所用刀具的尺寸受被加工孔尺寸的限制,刚性差,容易产生弯曲变形和振动;
2)用定尺寸刀具加工孔时,孔加工的尺寸往往直接取决于刀具的相应尺寸,刀具的制造误差和磨损将直接影响孔的加工精度;
3)加工孔时,切屑在工件内部,排屑及散热条件差,加工精度和表面质量Rz都不易控制,。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心材料上加工孔的之一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转。上述两种钻孔方式产生的误差是不相同的,在钻头旋转的钻孔方式中,由于切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发生偏斜或不直,但孔径基本不变;而在工件旋转的钻孔方式中则相反,钻头引偏会引起孔径变化,而孔中心线仍然是直的。
常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中最常用的是麻花钻,其直径规格为 Φ0.1-80mm。
由于构造上的限制,钻头的弯曲刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能达到 IT13~IT11;表面粗糙度也较大, Ra 一般为 50~12.5μm;但钻孔的金属切除率大,切削效率高。钻孔主要用于加工质量要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和表面质量要求较高的孔,则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并提高孔的加工质量,扩孔加工既可以作为精加工孔前的预加工,也可以作为要求不高的孔的最终加工。扩孔钻与麻花钻相似,但刀齿数较多,没有横刃。
与钻孔相比,扩孔具有下列特点:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽可以做得浅些,钻芯可以做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为 IT11~IT10 级,表面粗糙度Ra为12.5~6.3μm。扩孔常用于加工直径小于 的孔。在钻直径较大的孔时(D ≥30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺寸的扩孔钻扩孔,这样可以提高孔的加工质量和生产效率。
扩孔除了可以加工圆柱孔之外,还可以用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工 *** 之一,在生产中应用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工 *** 。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,工作部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其应用
铰孔余量对铰孔质量的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易获得光洁的加工表面,尺寸公差也不易保证;余量太小,不能去掉上工序留下的刀痕,自然也就没有改善孔加工质量的作用。一般粗铰余量取为0.35~0.15mm,精铰取为 01.5~0.05mm。
为避免产生积屑瘤,铰孔通常采用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为 0.3~1mm/r。
铰孔时必须用适当的切削液进行冷却、润滑和清洗,以防止产生积屑瘤并及时清除切屑。与磨孔和镗孔相比,铰孔生产率高,容易保证孔的精度;但铰孔不能校正孔轴线的位置误差,孔的位置精度应由前工序保证。铰孔不宜加工阶梯孔和盲孔。
铰孔尺寸精度一般为 IT9~IT7级,表面粗糙度Ra一般为 3.2~0.8 μm。对于中等尺寸、精度要求较高的孔(例如IT7级精度孔),钻—扩—铰工艺是生产中常用的典型加工方案。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工 *** ,镗孔工作既可以在镗床上进行,也可以在车床上进行。
1. 镗孔方式
镗孔有三种不同的加工方式。
(1)工件旋转,刀具作进给运动 在车床上镗孔大都属于这种镗孔方式。工艺特点是:加工后孔的轴心线与工件的回转轴线一致,孔的圆度主要取决于机床主轴的回转精度,孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度。这种镗孔方式适于加工与外圆表面有同轴度要求的孔。
(2)刀具旋转,工件作进给运动 镗床主轴带动镗刀旋转,工作台带动工件作进给运动。
(3)刀具旋转并作进给运动 采用这种镗孔方式镗孔,镗杆的悬伸长度是变化的,镗杆的受力 变形也是变化的,靠近主轴箱处的孔径大,远离主轴箱处的孔径小,形成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的弯曲变形也增大,被加工孔轴线将产生相应的弯曲。这种镗孔方式只适于加工较短的孔。
2. 金刚镗
与一般镗孔相比,金刚镗的特点是背吃刀量小,进给量小,切削速度高,它可以获得很高的加工精度(IT7~IT6)和很光洁的表面(Ra为 0.4~0.05 μm)。金刚镗最初用金刚石镗刀加工,现在普遍采用硬质合金、CBN和人造金刚石刀具加工。主要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为 0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为 300~2000m/min。
为了保证金刚镗能达到较高的加工精度和表面质量,所用机床(金刚镗床)须具有较高的几何精度和刚度,机床主轴支承常用精密的角接触球轴承或静压滑动轴承,高速旋转零件须经精确平衡;此外,进给机构的运动必须十分平稳,保证工作台能做平稳低速进给运动。
金刚镗的加工质量好,生产效率高,在大批大量生产中被广泛用于精密孔的最终加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起注意的是:用金刚镗加工黑色金属制品时,只能使用硬质合金和CBN *** 的镗刀,不能使用金刚石 *** 的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿命低。
3. 镗刀
镗刀可分为单刃镗刀和双刃镗刀。
4. 镗孔的工艺特点及应用范围
镗孔和钻—扩—铰工艺相比,孔径尺寸不受刀具尺寸的限制,且镗孔具有较强的误差修正能力,可通过多次走刀来修正原孔轴线偏斜误差,而且能使所镗孔与定位表面保持较高的位置精度。
镗孔和车外圆相比,由于刀杆系统的刚性差、变形大,散热排屑条件不好,工件和刀具的热变形比较大,镗孔的加工质量和生产效率都不如车外圆高。
综上分析可知, 镗孔的加工范围广,可加工各种不同尺寸和不同精度等级的孔,对于孔径较大、尺寸和位置精度要求较高的孔和孔系,镗孔几乎是唯一的加工 *** 。镗孔的加工精度为 IT9~IT7级。镗孔可以在镗床、车床、铣床等机床上进行,具有机动灵活的优点,生产中应用十分广泛。在大批大量生产中,为提高镗孔效率,常使用镗模。
四、珩磨孔
1. 珩磨原理及珩磨头
珩磨是利用带有磨条(油石)的珩磨头对孔进行光整加工的 *** 。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。珩磨加工中,磨条以一定压力作用于工件表面,从 工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。
珩磨轨迹的交叉角
与珩磨头的往复速度及圆周速度有关,
角的大小影响珩磨的加工质量及效率,一般粗珩时取
°,精珩时取。为了便于排出破碎的磨粒和切屑,降低切削温度,提高加工质量,珩磨时应使用充足的切削液。
为使被加工孔壁都能得到均匀的加工,砂条的行程在孔的两端都要超出一段越程量。为保证珩磨余量均匀,减少机床主轴回转误差对加工精度的影响,珩磨头和机床主轴之间大都采用浮动连接。
珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式。
2. 珩磨的工艺特点及应用范围
1)珩磨能获得较高的尺寸精度和形状精度,加工精度为 IT7~IT6 级,孔的圆度和圆柱度误差可控制在 的范围之内,但珩磨不能提高被加工孔的位置精度。
2)珩磨能获得较高的表面质量,表面粗糙度Ra为 0.2~0.25μm ,表层金属的变质缺陷层深度极微2.5~25μm。
3)与磨削速度相比,珩磨头的圆周速度虽不高(vc=16~60m/min),但由于砂条与工件的接触面积大,往复速度相对较高(va=8~20m/min),所以珩磨仍有较高的生产率。
珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为 或更大,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等。
五、拉孔
1. 拉削与拉刀
拉孔是一种高生产率的精加工 *** ,它是用特制的拉刀在拉床上进行的。拉床分卧式拉床和立式拉床两种,以卧式拉床最为常见。
拉削时拉刀只作低速直线运动(主运动)。拉刀同时工作的齿数一般应不少于3个,否则拉刀 工作不平稳,容易在工件表面产生环状波纹。为了避免产生过大的拉削力而使拉刀断裂,拉刀工作时,同时工作刀齿数一般不应超过6~8个。
拉孔有三种不同的拉削方式,分述如下:
1)分层式拉削 这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除。为了便于断屑,刀齿上磨有相互交错的分屑槽。按分层式拉削方式设计的的拉刀称为普通拉刀。
2)分块式拉削 这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿(通常每组由2-3个刀齿组成)切除的。每个刀齿仅切去一层金属的一部分。按分块拉削方式设计的拉刀称为轮切式拉刀。
3)综合式拉削 这种方式集中了分层及分块式拉削的优点,粗切齿部分采用分块式拉削,精切齿部分采用分层式拉削。这样既可缩短拉刀长度,提高生产率,又能获得较好的表面质量。按综合拉削方式设计的拉刀称为综合式拉刀。
2. 拉孔的工艺特征及应用范围
1)拉刀是多刃刀具,在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作,生产效率高。
2)拉孔精度主要取决于拉刀的精度,在通常条件下,拉孔精度可达 IT9~IT7,表面粗糙度Ra可达 6.3~1.6 μm。
3)拉孔时,工件以被加工孔自身定位(拉刀前导部就是工件的定位元件),拉孔不易保证 孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工,往往都是先拉孔,然后以孔为定位基准加工其它表面。
4)拉刀不仅能加工圆孔,而且还可以加工成形孔,花键孔。
5)拉刀是定尺寸刀具,形状复杂,价格昂贵,不适合于加工大孔。
拉孔常用在大批大量生产中加工孔径为 Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔。
更多技术文章欢迎搜索我们自媒体“切削之家”
自媒体:切削之家
编辑人:刘晶磊
小编ID:565695880
注:
福利1:私信 回复 “技术” 您将获得平台发送的《技术手册》免费-免费-免费
福利2:私信 回复 “之一期” 您将获得 切削之家资料之一期
重要的事情说三遍 私信-私信-私信
—分享—
邵东县全县五金技能竞赛现场。
红网时刻4月8日讯(通讯员 唐志平 黄可乐 杨秀)培育工匠精神,舞动五金产业。4月7日,邵东县举行全县五金技能竞赛。这是第三届邵东五金机电博览会的环节之一,共有12支队伍角逐。吸引了近千名群众现场围观,为邵东五金技能喝彩。
邵东县委副书记黄振国宣布开赛,邵阳市总工会党组成员、副主席张红燕,邵东县人大常委会副主任、总工会主席张志红出席活动并为获奖选手颁奖。
为大力弘扬劳模精神、工匠精神,挖掘和推动邵东五金行业的发展,强化质量意识,树立先进典型,努力营造尊重劳动、尊重技术、尊重工匠的文明社会风尚,引导广大职工掀起“学技能、比贡献、创一流”的工作热潮,助推邵东工业加速转型升级,邵东县总工会、县人力资源和社会保障局、县五金行业协会特联合举办这次活动。
比赛现场。
竞赛内容为磨钻花技能比拼,要求选手在规定时间内完成一个规格为20毫米的麻花钻和一个规格为10毫米的3刃铣刀工艺现场 *** 。上午9时18分,比赛正式开始,磨轮高速飞转,选手紧张有序。
“这比的就是‘稳’和‘细’。手要稳,心要细。对选手而言既是技能比拼,也是综合素质的考验。”工作人员介绍。赛场内现场 *** 迭起,气氛十分热烈。
“我从1984年开始就在五金厂工作,以前做五金都靠弹簧锤,靠人力和手工,现在是半自动化,马上就要转型到全自动化。和以往比,生产线更省力,我们劳动的效率也更高了。”佰发工具的工人谢颖民说,“家乡的五金事业发展得如此蓬勃,我作为参与其中的一分子,既兴奋又欣慰!”
邵东小五金产业发展历史悠久,是著名的“五金之乡”。全县现有五金生产和经营企业3500余家,从业人员5万余人。扳手、钳子、锤子年生产能力达3亿套件,年产值超20亿元,占全国70%销售渠道和终端市场,产品远销欧美、中东、东南亚等地区。
现场,一台1.5米长、0.6米宽、1.1米高的设备吸引了众人目光。这是用来完成工具钳的铆钉孔位倒角工序的新型设备,通过工人的现场操作,在精准度、效率方面、工人数、良品率方面,与旁边传统设备形成鲜明对比。这是邵东五金新老设备转型升级的缩影之一。
当天,东方神鹰公司的王超获得之一名,“这次比赛既是对我的挑战,也是激励,我将继续努力钻研,将‘工匠精神’传承下去!”王超激动地说道。